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Introduction

Latent Variable Gaussian Graphical Model (LVGGM):
XO ∈ Rd is the observed variables and XL ∈ Rr the latent variables.
X = (X>O ,X

>
L )
> ∼ N(µ, Σ̃) and sparse precision matrix Ω̃ = Σ̃−1.

Then XO follows a normal distribution with marginal covariance matrix
Σ∗ = Σ̃OO being the top-left block matrix in Σ̃. By Schur complement

Ω∗ = (Σ̃OO)
−1 = Ω̃OO − Ω̃OLΩ̃

−1
LLΩ̃LO.

Let S∗ := Ω̃OO and L∗ := −Ω̃OLΩ̃
−1
LLΩ̃LO. Thus, the precision matrix

of LVGGM can be written as

Ω∗ = S∗ + L∗,

where ‖S∗‖0,0 = s∗ and rank(L∗) = r.
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The Proposed Estimator

Suppose that we observe i.i.d. samples X1, . . . ,Xn from N(0,Σ∗).
I the negative log-likelihood function

pn(S,L) = tr
[
Σ̂
(
S + L

)]
− log |S + L|,

where Σ̂ = 1/n
∑n

i=1XiX
>
i is the sample covariance matrix, and

|S + L| is the determinant of Ω = S + L.
I Due to the symmetry and low-rankness of L, we reparameterize it as

L = ZZ>, where Z ∈ Rd×r and r > 0 is the number of latent variables.

Estimator: we propose a nonconvex estimator using sparsity constrained
maximum likelihood:

min
S,Z

qn(S,Z) = tr
[
Σ̂
(
S + ZZ>

)]
− log |S + ZZ>|, s.t. ‖S‖0,0 ≤ s,

where s > 0 is a tuning parameter that controls the sparsity of S.

The Proposed Algorithm

We present the proposed algorithm here, which consists of two stages:
initialization and alternating gradient descent.

Algorithm 1 Alternating Thresholded Gradient Descent (AltGD) for LVGGM
1: Input: i.i.d. samples X1, . . . ,Xn, max number of iterations T , and parameters ⌘, ⌘0, r, s.

Stage I: Initialization

2: b⌃ = 1
n

P
n

i=1 XiX>
i

.
3: bS(0) = HTs(b⌃�1), which preserves the s largest magnitudes of b⌃�1.
4: Compute SVD: b⌃�1

� bS(0) = UDU>, where D is a diagonal matrix. Let bZ(0) = UD1/2
r ,

where Dr is the first r columns of D.

Stage II: Alternating Gradient Descent

5: for t = 0, . . . , T � 1 do

6: bS(t+0.5) = bS(t)
� ⌘rSqn

�bS(t)
, bZ(t)

�
;

7: bS(t+1) = HTs

⇣
bS(t+0.5)

⌘
, which preserves the s largest magnitudes of bS(t+0.5);

8: bZ(t+1) = bZ(t)
� ⌘

0
rZqn

�bS(t)
, bZ(t)

�
;

9: end for

10: output: bS(T )
, bZ(T ).
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Theoretical Analysis

I Assumptions
. A1 (Bounded Eigenvalues): ∃ ν > 0 such that the eigenvalues

of Σ∗ are bounded, i.e.,
0 < 1/ν ≤ λmin(Σ

∗) ≤ λmax(Σ
∗) ≤ ν <∞.

. A2 (Spikiness Condition): the spikiness ratio is defined as
αsp(L) := d‖L‖∞,∞/‖L‖F . We assume ∃ α∗ > 0 such that

‖L∗‖∞,∞ =
αsp(L

∗) · ‖L∗‖F
d

≤ α∗

d
.

. FOS (First-Order Stability): If max{‖S− S∗‖F , d(Z,Z∗)} ≤ R
for some R > 0 and L = ZZ> and L∗ = Z∗Z∗>. It holds that∥∥∇Sp(S,L)−∇Sp(S,L

∗)
∥∥
F
≤ γ2 · ‖L− L∗‖F ,∥∥∇Lp(S,L)−∇Lp(S

∗,L)
∥∥
F
≤ γ1 · ‖S− S∗‖F ,

where γ1, γ2 are constants and d(Z,Z∗) = minU∈O(r∗) ‖Z− Z∗U‖F .
I Main Theory

Validation of Initialization: Suppose A1 and A2 hold. Assume
n ≥ cν2rs∗ log d/R2 and s∗ ≤ c′d2R2/(rα∗2), where R is a constant
depending on ν. Then with probability at least 1− C/d, we have∥∥Ŝ(0) − S∗

∥∥
F
≤ R, and d

(
Ẑ(0),Z∗

)
≤ R,

where C > 0 is an absolute constant.
Convergence Rate: Furthermore, suppose FOS holds. Let the step
sizes η ≤ C0/ν

2 and η′ ≤ C0/ν
4, and the sparsity parameter satisfy

s ≥
(
4(1/(2

√
ρ)− 1)2 + 1

)
s∗. Let ρ and τ be

ρ = max

{
1− η

ν2
, 1− η′

ν2

}
, τ = max

{
cs∗ log d

ν4n
,
crd

ν6n

}
.

Then for any t ≥ 1, with probability at least 1− C1/d, we have

max
{∥∥Ŝ(t+1) − S∗

∥∥2
F
, d2(Ẑ(t+1),Z∗)

}
≤ τ

1−√ρ︸ ︷︷ ︸
statistical error

+
√
ρt+1 ·R︸ ︷︷ ︸

optimization error

,

where C1 > 0 is an absolute constant.

Main Remarks

I The initial points returned by the initialization stage of AltGD fall in
small neighborhoods of S∗ and Z∗ if n = O(s∗ log d), which essentially
attains the optimal sample complexity for LVGGM estimation. In
addition, we require s∗ . d2/(rα∗2), which means the unknown sparse
matrix cannot be too dense.

I The statistical error scales as max
{
Op(
√
s∗ log d/n), Op(

√
rd/n)

}
,

where Op(
√
s∗ log d/n) corresponds to the statistical error of S∗, and

Op(
√
rd/n) corresponds to that of L∗ (or equivalently Z∗). This

matches the minimax optimal rate of estimation errors in Frobenius
norm for LVGGM estimation.

I AltGD enjoys linear convergence rate for optimization error. After
T ≥ max{O(log(ν4n/(s∗ log d))), O(log(ν6n/(rd)))} iterations, the
total estimation error achieves the same order as the statistical error.

Numerical Simulations

I Data Generation: We randomly generated a sparse positive definite
matrix Ω̃ ∈ R(d+r)×(d+r), with sparsity s∗ = 0.02d2. Set S∗ := Ω̃1:d;1:d

and L∗ := −Ω̃1:d;(d+1):(d+r)[Ω̃(d+1):(d+r);(d+1):(d+r)]
−1Ω̃(d+1):(d+r);1:d.

Then we sampled X1, . . . ,Xn ∼ N(0, (Ω∗)−1), where Ω∗ = S∗ + L∗.
I Validation of Convergence Rate:
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Figure: (a)-(b): Evolution of estimation errors with number of iterations t going up

with s∗ = 0.02d2 and varying d, n and r. (c)-(d): Estimation errors ‖Ŝ(T )− S∗‖F and

‖L̂(T ) − L∗‖F versus scaled statistical errors
√
s∗ log d/n and

√
rd/n.

I Comparisons with Convex Methods: AltGD is nearly 50 times faster
than the other two methods based on convex algorithms.

Table: Estimation errors in terms of Frobenius norm on different synthetic datasets. Results
were reported on 10 replicates in each setting.

Setting Method ‖Ŝ(T ) − S∗‖F ‖L̂(T ) − L∗‖F ‖Ω̂(T ) −Ω∗‖F Time (s)

d = 100, r =

2, n = 2000

PPA 0.7335±0.0352 0.0170±0.0125 0.7350±0.0359 1.1610
ADMM 0.7521±0.0288 0.0224±0.0115 0.7563±0.0298 1.1120
AltGD 0.6241±0.0668 0.0113±0.0014 0.6236±0.0669 0.0250

d = 500, r =

5, n = 10000

PPA 0.9803±0.0192 0.0195±0.0046 0.9813±0.0192 35.7220
ADMM 1.0571±0.0135 0.0294±0.0041 1.0610±0.0134 25.8010
AltGD 0.8212±0.0143 0.0125±0.0000 0.8210±0.0143 0.4800

d = 1000, r =

8, n = 2.5× 104

PPA 1.1620±0.0177 0.0224±0.0034 1.1639±0.0179 356.7360
ADMM 1.1867±0.0253 0.0356±0.0033 1.1869±0.0254 156.5550
AltGD 0.9016±0.0245 0.0167±0.0030 0.9021±0.0244 7.4740

d = 5000, r =

10, n = 2× 105

PPA 1.4822±0.0302 0.0371±0.0052 1.4824±0.0120 33522.0200
ADMM 1.5010±0.0240 0.0442±0.0068 1.5012±0.0240 21090.7900
AltGD 1.3449±0.0073 0.0208±0.0014 1.3449±0.0084 445.6730

Experiments on Genomic Datasets

Table: Summary of CPU time on luminal
subtype breast cancer dataset.

Method GLasso PPA ADMM AltGD

Time (s) 38.63 85.01 7.67 0.15

Experiments on TCGA breast
cancer gene expression data
(n = 601 samples and d = 299
TFs) to infer the regulatory
network. Methods based on LVGGMs are able to recover more edges
accurately than graphical Lasso because of the intervention of latent
variables. AltGD runs much faster than the convex methods.
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(a) GLasso
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(b) PPA
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(c) ADMM
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(d) AltGD

Figure: An example of subnetwork in the transcriptional regulatory network of luminal breast
cancer. Gray edges are the interactions from the Cistrome Cancer Database; red edges are
the ones inferred by the respective methods; green edges are incorrectly inferred interactions.
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