

Problem Setup and Background

- Problem Sample from the target distribution $\pi \propto \exp\{-f(\mathbf{x})\}$
- Hamiltonian Langevin dynamics stochastic differential equation

 $\mathsf{d} \mathbf{V}_t = -\gamma \mathbf{V}_t \mathsf{d} t - u \nabla f(\mathbf{X}_t) \mathsf{d} t + \sqrt{2\gamma u} \mathsf{d} \mathbf{B}_t$ $\mathsf{d} \boldsymbol{X}_t = \boldsymbol{V}_t \mathsf{d} t$

where the parameters are

 $\triangleright \gamma > 0$ is called the friction parameter

 \triangleright u > 0 is the inverse mass.

- \triangleright B_t is a standard Brownian motion in \mathbb{R}^d
- Asymptotic property Under certain assumptions on $\nabla f(\mathbf{x})$, the Hamiltonian Langevin dynamics has an unique stationary distribution, i.e.,

 $(\mathbf{X}_{\infty}, \mathbf{V}_{\infty}) \sim \pi_{x,v} \propto \exp\left\{-f(\mathbf{x}) - \|\mathbf{v}\|_{2}^{2}\right)/(2u)\right\}$

Sampling Algorithm

Density function

Target density $\pi \propto e^{-f(\mathbf{x})}$, with $f(\mathbf{x}) = 1/n \sum_{i=1}^{n} f_i(\mathbf{x})$

Stochastic Recursive Variance Reduced HMC Update form

$$\mathbf{v}_{k+1} = \mathbf{v}_k e^{-\gamma\eta} - u\gamma^{-1}(1 - e^{-\gamma\eta})\mathbf{g}_k + \boldsymbol{\epsilon}_k^v$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \gamma^{-1}(1 - e^{-\gamma\eta})\mathbf{v}_k$$

$$+ u\gamma^{-2}(\gamma\eta + e^{-\gamma\eta} - 1)\mathbf{g}_k + \boldsymbol{\epsilon}_k^x$$

 \triangleright \mathbf{g}_k denotes the semi-stochastic gradient

 \triangleright ϵ_k^v and ϵ_k^x are Gaussian random vectors

Semi-stochastic gradient

►
$$k \mod L = 0$$
:
 $\mathbf{g}_k = 1/B_0 \sum_{i \in \widetilde{\mathcal{B}}_k} \nabla f_i(\widetilde{\mathbf{x}}_k)$
► $k \mod L \neq 0$:
 $\mathbf{g}_k = 1/B \sum_{i \in \mathcal{B}_k} \left[\nabla f_i(\mathbf{x}_k) - \nabla f_i(\mathbf{x}_{k-1}) \right] + \mathbf{g}_{k-1}$
► **Random vectors**
The covariance matrix of random vectors $\boldsymbol{\epsilon}_k^v$ and $\boldsymbol{\epsilon}_k^a$
satisfies
 $\mathbb{E}[\boldsymbol{\epsilon}_k^v(\boldsymbol{\epsilon}_k^v)^{\mathsf{T}}] = u(1 - e^{-2\gamma\eta}) \cdot \mathbf{I}$
 $\mathbb{E}[\boldsymbol{\epsilon}_k^x(\boldsymbol{\epsilon}_k^x)^{\mathsf{T}}] = u\gamma^{-2}(2\gamma\eta + 4e^{-\gamma\eta} - e^{-2\gamma\eta} - 3) \cdot \mathbf{I}$

$$\mathbb{E}[\boldsymbol{\epsilon}_{k}^{v}(\boldsymbol{\epsilon}_{k}^{x})^{\top}] = u\gamma^{-1}(1 - 2e^{-\gamma\eta} + e^{-2\gamma\eta}) \cdot \mathbf{I}$$
$$\mathbb{E}[\boldsymbol{\epsilon}_{k}^{v}(\boldsymbol{\epsilon}_{k}^{x})^{\top}] = u\gamma^{-1}(1 - 2e^{-\gamma\eta} + e^{-2\gamma\eta}) \cdot \mathbf{I}$$

Stochastic Gradient Hamiltonian Monte Carlo Methods with Recursive Variance Reduction

Stochastic Gradient Hamiltonian Monte Carlo Methods with Recursive Variance Reduction Difan Zou and Pan Xu and Quanquan Gu University of California, Los Angeles

Convergence Results

Assumptions

 \triangleright **Smoothness** Each component function $f_i(\cdot)$ satisfies $\|\nabla f_i(\mathbf{x}) - \nabla f_i(\mathbf{y})\|_2 \le M \|\mathbf{x} - \mathbf{y}\|_2, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d$ \triangleright (*m*, *b*)-**Dissipative** The sum function $f(\cdot)$ satisfies

$$\langle \nabla f(\mathbf{x}), \mathbf{x} \rangle \ge m \|\mathbf{x}\|_2^2 - b, \quad \forall \mathbf{x} \in \mathbb{R}^d$$

Convergence rate of SRVR-HMC

$$\mathcal{W}_2(\mathbb{P}(\mathbf{x}_K),\pi) = O\left(\Gamma_1\left(\left(1+\frac{L}{B}\right)K\eta^3 + \frac{K\eta}{\gamma^2 B_0}\right)^{1/4} + \frac{e^{-\frac{1}{2}}}{2}\right)$$

- \triangleright L: epoch length of SRVR-HMC, B: mini-batch size, B_0 : outer batch size and η : step size
- \succ $\Gamma_1 = poly(d)$ and $\mu_* = e^{-O(d)}$ is the spectral gap of Hamiltonian Langevin dynamics
- Convergence rate of SG-UL-MCMC

$$\mathcal{W}_2(\mathbb{P}(\mathbf{x}_K), \pi) = O\left(\Gamma_1 \left[2K\eta^3 + \frac{K\eta}{\gamma^2 B_0} \cdot \mathbb{1}(B_0 < n)\right]^{1/4} + \frac{K\eta}{\gamma^2 B_0}\right)$$

 \triangleright B_0 : mini-batch size in each iteration

 \triangleright $\Gamma_1 = \operatorname{poly}(d)$ and $\mu_* = e^{-O(d)}$

Remark: setting $B_0 = n$ implies the convergence rate of UL-MCMC

Comparison with the State-of-the-art

Gradient complexity

Number of stochastic gradient evaluations needed to achieve $\mathcal{W}_2(\mathbb{P}(\mathbf{x}_K), \pi) \leq \epsilon$

Methods	Gradient Complexity
LMC	$\widetilde{O}(\epsilon^{-4}\lambda_*^{-5}n)$
SGLD	$\widetilde{O}\left(\epsilon^{-8}\lambda_{*}^{-9}\right)$
SVRG-LD	$\widetilde{O}(n + \epsilon^{-2}\lambda_*^{-4}n^{3/4} + \epsilon^{-4}\lambda_*^{-4}n^{1/2})$
HMC	$\widetilde{O}(\epsilon^{-4}\mu_*^{-3}n)$
UL-MCMC	$\widetilde{O}(\epsilon^{-2}\mu_*^{-3/2}n)$
SGHMC	$\widetilde{O}(\epsilon^{-8}\mu_*^{-5})$
SG-UL-MCMC	$\widetilde{O}(\epsilon^{-6}\mu_*^{-5/2})$
SRVR-HMC	$\widetilde{O}((n+\epsilon^{-2}n^{1/2}\mu_*^{-3/2})\wedge\epsilon^{-4}\mu_*^{-2})$

